AIAA RSRM Short Course, July 2002, Indianapolis, Indiana

Five-Segment Booster Space Shuttle

MOKAL MONUTAIN

Presented by: Stanley R. Graves Director, RSRM Engineering

ATK Thiokol Propulsion

020305ppf

12 ft 2 in. (3.7 m)

146 in.

Segment

Nozzie

Solid Rocket Motor (RSRM) Space Shuttle Four-Segment Reusable

OPERATIONAL SOLID WORLD'S LARGEST ROCKET MOTOR

Igniter Segment **Forward** Segment Center Center Segment

126 ft 1.5 in. 1,513 in.

> Total RSRM Weight: Total Propellant Weight:

Space Shuttle RSRM

1,107,000 lb

2,590,000 lbf

Average Thrust: Time of Burning:

(38.4 m)

020305ppt

RSRM History

Program start: 1974

First static test: 1977
First flight: April 12, 1981

25 flights: 1981 to 1986

Challenger disaster: January 28, 1986

Redesign activity: 1986 to 1988
 Improved field joints, igniter joints, nozzle-

Return to flight: September 29, 1988

to-case joint, and nozzle ablatives

85 RSRM flights:1988 to 2002

28 years: 259 total motors flown or tested

39 static tests

220 flight motors

Return to Flight (STS-26)

Future Plans: Five-Segment Booster (FSB)

- NASA is considering upgrading the Space Shuttle by adding a fifth segment to the current foursegment solid rocket booster
- Enhance Space Shuttle capability
- Eliminate Return to Launch Site (RTLS) or Trans-Atlantic Landing (TAL) abort modes
- Achieve Abort-to-Orbit (ATO) with single engine out off the pad
- Orbiter space station Alpha payload increased to 40,000 lb
- Enable crew escape module and other Shuttle system reliability and safety upgrades
- Reduce main engine throttle settings
- Potential boost propulsion for heavy-lift vehicle

Four-Segment vs. Five-Segment Booster

w
Õ
Ŏ
Ĭ
\rightleftharpoons
0
_
ס
Ø
1
ᅎ
ĭ
3
ヹ
=
\equiv
$\mathbf{\Omega}$
Œ

123.4	129.6	Burn Time (sec)
1016	1016	Max Pressure (psia)
3,330,000	3,800,000	Max Thrust (lbf)
4-Segment	5-Segment	

Abort Modes (one SSME out) Study Results

adequate performance margins Achieve ATO from pad at 109 - 112% SSME throttle with

TAL: Trans-Atlantic Landing

PTM: Proceed to Mission ATO: Abort to Orbit

Five-Segment (SSME 109%)
Five-Segment (SSME 109-112%)

Thrust Post

Five-Segment Booster

FSB Grain Design

Pressure Drop Down the Bore at Ignition

FSB REPRESENTS ~115 PSIA INCREASE IN RSRM STATIC PRESSURE DROP

Mach Number Down the Bore at Ignition

FSB REPRESENTS ~0.2 INCREASE IN RSRM CENTERLINE MACH NUMBER

FSB Design Issue: Erosive Burning

Concerns

- Solid rocket motor with high cross-flow velocities (high Mach number) susceptible to "erosive burning"
- Burn rate enhancement due to erosive burning increases head-end pressure levels
- Shuttle pressure trace reaches maximum head-end pressure during ignition
- Erosive burning compounds operating pressure possibly affecting certified maximum expected operating pressure (MEOP)
- Erosive burning difficult to predict
- Current models are empirically derived, and based on small scale motors relative to FSB

ACCURATE EROSIVE BURNING PREDICTIONS REQUIRED FOR FSB

Enhanced Propellant Burn Rate

CASTOR® IVB Motor Performance

- Large length to diameter ratios can lead to enhanced propellant burn rates
- There is a Mach number threshold above which enhanced burn rate predominates
- The enhanced burn rate is usually of short duration and repeatable
- Difficult to predict for new designs using current modeling techniques

Drivers of Enhanced Propellant Burn Rate

FSB Erosive Burning Model Development

Approach

- Develop relationship between Mach number, pressure, and hydraulic diameter for propellants with different burn rates
- Subscale tandem, segmented 5-in. CP test article designed
- Test motors instrumented to measure propellant surface regression and pressure drop down the motor
- Developed relationship between burn rate and mach number in subscale motor
- Developed scale factors to adjust for motor size
- Anchored model to CASTOR® IVB and RSRM
- full-scale 5-segment RSRM static test (ETM-3) in July 2003 Plan to validate FSB erosive burning scale factors using a

FIRST STEP IN MODEL DEVELOPMENT AND VALIDATION

Modeling Approach

Use existing motor data to scale subscale motor data

 Enable development of a scaleable erosive burning model without a midsize test motor

prediction for FSB

0.1

5

20

30

40

50

60

70

Hydralic Diameter (in)

Provide an accurate

Subscale Motor Hardware Overview

Subscale test motor configuration

- Six tandem 5-in.center-perforated (CP) motors
- Bore/throat diameter controls Mach number
- Number of segments controls motor chamber pressure

Instrumentation/signal acquisition

- Signal transmission
- Ultrasonic signal enhanced through impedance matching of materials
- Acoustic lens to reduce signal scatter on curved propellant surface
- Noise reduction
- Elimination of standing wave noise
- Return signal synchronized with reflection of propellant gum stock interface

Hardware Configuration

Thermocouples

Pressure Transducers

Igniter/ Initiator

> 5-in. CP Case (6)

Ultrasonic Instrument Configuration

Acoustic stack

VESPEL

- Provides an acoustic window through the case wall
- Supports motor operating pressure

Acoustic lens

- Curvature on the VESPEL surface about the motor centerline to focus the signal on the propellant bore surface
- Minimizes signal scatter

Propellant gum stock

- Intermediate acoustic impedance material
- Propellant without solids

Propellants

CASTOR®, ETM-3, RSRM

Propellant Surface Mapping

with a sample rate of 10 MHz for each of the six segments Data was acquired every 20 msec Noise Reduction Acquired Data -1000 **1**000 500 50 50.0 100.0 150.0 200.0

- propellant surface is tracked and Return wave form from the propellant web thickness its time of flight used to establish
- Speed of sound in propellant established through testing in a laboratory environment

Time History of Propellant Surface Regression

Subscale Motor Design

which to compare the other segments

Modeling Assumptions

Erosive burning can be characterized through 1-D ballistic analysis techniques

Shown to be accurate through subscale and full-size motor

analysis

Able to normalize propellant burn rates with respect to axial Mach number

Erosive burning is a boundary layer phenomena

- with grain hydraulic diameter Burn rate enhancement can be scaled with an association
- threshold is exceeded, erosive burn rate is influenced by Prior to reaching a threshold, aPn applies. Once the local Mach number
- near propellant boundary layer The threshold is associated with core fluid flow influencing the

Erosive Burning Characterization

0.45

Tandem Motor Predicted Performance

- Original prediction using data from single motor firing
- No erosive burning

- Re-prediction using measured propellant burn rate
- Accurate match indicates that measured burn rate captures individual segment performance

on Erosive Burning **Hydraulic Diameter Influence**

- Scaling with hydraulic diameter is a means to capture the propellant surface environment in a 1-D analysis
- Scale factor is curve fit from the subscale and full-scale data

CASTOR® IVB and RSRM Predictions

- RSRM used as a threshold for the erosive burning model
- Model indicates
 approximately 6 psi
 enhanced burn rate present
 in RSRM

8

CASTOR® IVB pressure trace matches well

ETM-3: World's Largest Segmented SRM

an endeavor focused on learning & improvement verification of a five-segment Engineering Test Motor (ETM-3) MSFC and Thiokol are well under way with design and

- People
- RSRM (margins)
- Techniques (models, methods, etc.)

- risk reduction and technical skill enhancement ETM-3 provides opportunities for FSB
- Erosive burning (validate analytical predictions and scale factors)
- Instrumentation

Propellant formulation

- Structures
- Computational Fluid Dynamics

ETM-3 Five-Segment Test Motor

STATIC TEST SCHEDULED JULY 2003

ETM-3 Predicted Erosive Burning

ETM-3 Ballistic Performance

ETM-3 models predict a burn rate enhancement of

about 8 psi due to erosive

burning

FSB models predict a burn rate enhancement of less than 30 psi due to erosive burning

FSB Program Summary

- FSB shows great potential to enhance Space Shuttle capability
- Eliminate RTLS or TAL abort modes
- Achieve ATO with single engine out off the pad
- Orbiter space station Alpha payload increased to 40,000 lb
- and safety upgrades Enable crew escape module and other Space Shuttle system reliability
- Subscale testing and preliminary analysis show erosive burning to be a non-issue for FSB (less than 30 psi)
- Five-segment ETM-3 provides early validation of analytical methods
- Increase understanding of internal gas dynamics
- Improve ignition transient mode
- Demonstration of reduced burn rate propellant ballistic performance
- Provide data for potential FSB design update and loads refinement